Lecture 1: Nostalgic Programming (Fortran)

We start off the semester near the start of PL history, with Fortran. Why, you ask, when
there are so many nicer languages in the world? Fortran can claim a feat that few languages can:
It has survived over 50 years without losing its relevance. While you may have never written
Fortran, it’s still heavily used in scientific and numeric computing. If you've ever used a major
numeric library (e.g. LAPACK or BLAS for linear algebra) it was probably written in Fortran.

It’s hard for a language to go 50 years without seeing a lot of change. Many of the language
features we take for granted today have made their way into Fortran, but not for a long time.
Likewise, old versions of the language have features that have long since fallen out of use. Perhaps
more interesting, new versions of Fortran have not just back-ported features from more modern
languages, but innovated within Fortran’s specialty of high performance code.

Before we get started, a few fun facts:

e Fortran is older than my dad (1957 vs. 1958)

e Intel’s Fortran compiler beats every other implementation of every language on the Pro-
gramming Language Shootout benchmark.

e Early Fortran compilers fit in 4K words of memory

Timeline of Fortran features:

’ Year \ Feature(s)
1957 1/0, DO loops, GOTO'’s, IF statements (all fixed-layout)
1958 Functions
1966 Booleans, portability
1977 Block if/else, strings, better I/O
1990 | Free-form input, SIMD parallelism, recursion, memory allocation, modules
1995 Better SIMD parallelism
2003 OOP, function pointers
2008 More better parallelism (SIMD and MIMD)

You'll notice there are lots of versions of Fortran. There’s no way we’re going to cover 7
versions in one lecture, but it IS important to see how the language has evolved over time, so
we’re going to learn Fortran ’57 first, then Fortran ’08.

1 Fortran ’57

There’s nothing like learning by example, so we’re going to start out with some example Fortran
programs (don’t worry, we're going to take our time reading them). Let’s start with the very
first program given in the original Fortran manual:

(Note to self: Draw this on a grid on the board so people can see the alignment)

C PROGRAM FOR FINDING THE LARGEST VALUE
C X ATTAINED BY A SET OF NUMBERS
BIGA = A(1)

DO 20 I =2, N
IF (BIGA - A(I)) 10, 20, 20

10 BIGA = A(D)
20 CONTINUE

We can already see a lot of weird things happening in even this short code snippet. You’ll
notice a lot of interestingly-placed whitespace. This is because up until 1990, Fortran was a
fized-format language, meaning whitespace matters, a lot. The format is as follows:

e All text is uppercase.

e Column 1 is the comment column. If this position contains a C, the rest of the line is
ignored.

e Columns 1-5 (notice column 1 serves double-duty) are the statement number. Statement
numbers are needed so you can tell one statement how to jump to another (control flow).
More on this later. Note that you don’t need a number on every line, only the ones you
want to refer to from somewhere else. Also, statement numbers need not be consecutive or
even increasing. However, it’s often easier to read code where the numbers are increasing,
and programmers traditionally space out the sequence numbers enough that they can insert
more code without renumbering the rest.

e Column 6 is the continuation column. Remember that Fortran had to be punched onto
cards, which have finite length. If you needed to write a really long line, you would spread
it out over multiple cards. The way you tell the compiler that two cards are the same line
is by putting an X in the 6’th column of the second line. (You can chain multiple cards in
this fashion if the line is really long). Note that our comment doesn’t actually have to be
a continuation line, we could just have two comment lines in a row.

e Columns 7-72 contain the actual program text.

e Columns 73-80 are ignored. Back in the day, these would be used to number the cards in
case some stupid intern dropped the deck and you had to put them back in order. These
days it’s mostly used to write love letters to your girlfriend without the compiler barfing
on your program.

Before any of you get too confused, I'd like to point out that the variables A and N aren’t
defined anywhere. This isn’t a magical Fortran feature that invents variables for you. This is just
an incomplete code snippet. We're assuming we’ve already defined these variables somewhere,
and that A is an array and N is an integer.

How do we know the types? You’ll see how to define an array later, and N is an integer
for a funny reason - any variable starting with letters I through N is considered an integer. All
other variables are floating point or arrays. This might seem really stupid, but nobody had done
types before. Noone had developed the idea of declaring a variable’s type along with its name,
so Fortran mixed the two together.

The actual code starts on line 3:
BIGA = A(1)

The first statement defines a new variable BIGA and sets it to the first element of A. We
already see two interesting things here: There’s no special syntax for declaring a variable vs.
assigning it. If the variable exists, it gets modified, otherwise it gets defined. This is common
among scripting languages, but somewhat uncommon for a compiled language like Fortran.

Secondly, note that arrays are I-indexzed. A(1) refers to the first element of the array, not the
second like it would in many programming languages. Given the mathematical background
to Fortran, and the lack of any established convention, this is not an unreasonable decision.
Somewhat less interesting: The syntax A(I) for array access is also pretty uncommon today, in
favor of A[I]. Again, there was little convention to go on. The only downside of this syntax is
that function calls and array accesses look awfully similar (aka the same).

DO 20 I =2, N

The next statement is the start of a DO loop. This is awfully similar to the for loops you know
and love, but with a critical difference: Fortran doesn’t have any sort of curly-brace-imposed
block structure. Every line in some sense stands on its own. Instead of using braces to delimit
the end of the loop, we explicitly write out a statement number for the end of the loop. The 20
inDO 20 I = 2, N means that after executing statement number 20, we come back to the top
of the loop. The I = 2, N part is more standard: it means we make a variable I whose initial
value is 2 and goes up to N(inclusive).

IF (BIGA - A(I)) 10, 20, 20

This is called an “arithmetic if”. Later versions of Fortran have a more conventional “logical
if”, but this is the only kind of “if” statement in the original Fortran. To evaluate it, first we
compute BIGA - A(I). We then look at its value. We jump to the first statement number if the
value is less than 0, the second if exactly 0, the third if greater than 0.

You're probably not used to programming this way, are you? What this line is really trying
to compute is “IF BIGA < A(I) THEN 10 ELSE 20”7, but we can’t express comparisons directly
in fortran, we need to subtract and then compare the value with 0. You’re also probably not
used to programming with jumps (goto’s) either. Early Fortran is a very unstructured language
- there are no block statements at all - whenever you want to go somewhere, you have to specify
its statement number (except calling a function, which you can thankfully do by name).

10 BIGA = A(I)

This statement is number 10. If you look at the previous line you’ll see this is the BIGA < A(I)
case, which means we need to update the maximum. That’s exactly what we do - this line just
changes BIGA to be the current element of the array.

20 CONTINUE

This statement is kind of boring. A CONTINUE just returns to the top of a loop. But there is actu-
ally something interesting happening here. Not only do we execute this line in the BIGA >= A(I)
case of the “if” statement, we also execute it in the opposite case, after first executing statement
10. This kind of control flow would be very unnatural in a structured programming language
like C - having the else branch start half-way through the then branch, but this style is easy and
common in Fortran. Granted, much of the world’s worst code has been written by taking this
unstructured style to its logical extreme, leading to spaghetti code.

1.1 A more complete example

Q

PROGRAM FOR FINDING THE LARGEST VALUE

C X ATTAINED BY A SET OF NUMBERS
DIMENSION A(999)
READ 1 N, (A(I), I =1,N)

1 FORMAT (I3/(12F6.2))

BIGA = A(1)
DO 20 I =2, N
IF (BIGA - A(I)) 10, 20, 20

10 BIGA = A(D

20 CONTINUE
PRINT 2 N, BIGA

2 FORMAT (21HTHE LARGEST OF THESE I3, 12H NUMBERS IS F7.2)
STOP O

The DIMENSION statement says A is an array with 999 elements. From the name A, we know
it’s an array of floats.

The next line is a read statement. The first argument 1 is the number of the FORMAT statement
that specifies the input format. The rest of the line says where to store the inputs. The syntax
N, (A(I), I = 1,N) means we put the first input in N, then put the next N inputs in consecutive
elements of A.

Here are some examples for the FORMAT statement (used both for reading and writing):

I3: A 3-digit integer
H5HELLO: The 5-character string “HELLO”
F3.2: A 3-digit float with two digits after the decimal
13 / F3.2: Each line alternates between a 3-digit integer and 3-digit float with two digits after
the decimal
13 / 12 / (I1): The first line has a 3-digit integer, the second has 2-digit, and all the rest have
1-digit.
213: Each line has 2 3-digit integers

Note the last two formats (and especially the last one) are strange. We can use slashes to
separate multiple patterns to say they alternate. If we want to special-case the first few rows
and make the rest use the same pattern, we separate with slashes, then put the last pattern in
parentheses.

The STOP instruction is simple - it just terminates the program and returns the given status
code.

1.2 A more complete non-example

At this point you basically know Fortran '57 (it’s a pretty simple language), but here are a few
more features you may want to know about and one or two you might not.

1.2.1 Standard Library:

The standard library is, umm...small. It contains 5 functions with several variations. The
naming conventions are as such:

e All function names end in F.

e Functions that return integers are prefixed with X

e If functions can accept both integers and floating points, the integer version ends in OF,

and the floating point version ends in 1F.

Without further ado, here’s the library:

Name Operation “Type”

ABSF Absolute value float -> float
XABSF int -> int

INTF Round toward 0 float -> float

XINTF float -> int

MODF Compute X mod Y float * float -> float
XMODF int * int -> int
MAXOF | Max of arbitrarily many values int * int * ... -> float
MAXI1F float * float * ... -> float
XMAXOF int * int * ... -> int
XMAXIF float * float * ... -> int
MINOF Min of arbitrarily many values int * int * ... -> float
MIN1F float * float * ... -> float
XMINOF int * int * ... -> int
XMIN1F float * float * ... -> int

1.2.2 Arithmetic Operators

You saw the operator - in our example above. Fortran supports the four basic arithmetic
operators, as well as ** for exponentiation. Also note that Fortran lacks the logical and bitwise
operators that may be familiar to C users.

1.2.3 DO loops

In our earlier example, the DO loop takes three arguments: the number of the loop’s last
statement, a minimum value and maximum value. DO loops also support a more general case
that takes a four argument: an increment. So while the 3-argument do loop

DO 300, I =1, 100
. <STUFF>
300 CONTINUE

is equivalent to the C code:
for(int i=1; i <= 100; i++) {

<do stuff>

3

you can also a DO loop like

DO 300, I =1, 5
<STUFF>
300 CONTINUE

which is equivalent to the C code:

for(int i = 1; i <= 100; i +=5) {
<do stuff>
}

Note also that in Fortran it is illegal to change the loop index or upper bound during the
body of a loop, unlike in C.

1.2.4 DIMENSION statements

Earlier we mentioned the DIMENSION statement used to define arrays. What we didn’t mention
is that you can define arrays of up to (but not beyond) 3 dimensions by specifying multiple
parameters to the DIMENSION clause. So DIMENSION F00(2,4,8) makes FOO a 2 X 4 x 8 matrix.
Note on memory representation: The first argument varies most rapidly - that is Fortran uses
column-magjor order, which is the opposite of C’s row-major order. I've heard smart math
people! complain that column-major is faster (better cache performance) for some important
matrix algorithms.

1.2.5 GO TO statements

We've somehow managed to skip the most fun statements in Fortran - GO TQO! This is possibly
the most hated construct in any programming language in the history of mankind, inviting the
wrath of such tiber-nerds as Edsger Dijkstra and Niklaus Wirth. The GO TO statement allows
you to write more bad code faster. It appears in three forms:

Unconditional GO TO This literally means “go to this statement, and continue from there”.
In the absense of block statements, you will use GO TO’s a lot. While you don’t need GO TO’s
to implement a loop, you do need them to implement a traditional IF block. Say you want to do
something based on a 3-valued compare of X, then do a bunch of the same stuff in every case.
You would write that like so:

IF (X) 1, 2, 3
1 <LESS CASE>

GO TO 4

2 <EQUAL CASE>
GO TO 4

3 <GREATER CASE>

4 <REST OF FUNCTION>

IEarlin Lutz, Bentley Systems, Inc.

Computed GO TO Computed GO TO’s have the following syntax
GO TO (n_1, ..., nm) I

Here each n; is a statement number. [is used as an index into the list of statement numbers,
then execution continues at the corresponding statement. This is somewhat analagous to C’s
switch statement, which each branch of the switch is a different entry in the jump table. This
statement can be used to implement efficient multi-way branches, but is hated even more than
regular GO TO.

Assigned GO TO This is a variant on computed GO TO. The syntax is almost the same,
except the variable comes before the statement numbers:

GOTOL (n_1, ..., n_m)

Here L is a variable pointing to a statement, and that statement must be one of the entries
in the list (n_1, ..., n_m). What does “point to” mean in this case? You can’t just set the
variable to a statement number with a normal assignment operation, you must use the following;:

ASSIGN i TO L

This instruction means that if later use L in an assigned GOTO, we end up at statement
i. Why do we have this separate assign instruction? There’s actually a good reason: We want
be able to check at compile time that we’re jumping to a valid statement (one specified in our
list). This is easy to do with the ASSIGN statement because i must always be a literal integer.
Without ASSIGN, it would be undecidable because i could contain any variable depending on
runtime behavior.

1.3 Language Evaluation

So now you’re all world-class experts in Fortran, so let’s take a look at the language design and
decide how well the designers did. Let’s make a list of the good and bad parts of Fortran:

Good Bad
Variables, not registers No functions?
Arithmetic expressions | Microscopic library

Loops Unstructured

I/0 Fixed-format
Types?

Looking at the positives, one thing you should take away is that, while quaint compared to
today’s languages, Fortran '57 represented a massive boost in programmer productivity - early
papers estimated a factor of 5 productivity improvement. Having any real programming lan-
guage, no matter how meager, freed programmers from a lot of really stupid tasks like managing
registers or flattening a complicated formula into all its component instructions. Few languages
can claim such a great improvement over their predecessors.

Let’s tackle the negatives:

No functions So it seems somewhat lacking to create a programming language that doesn’t
allow you to write functions. It’s not like nobody thought of the idea before - Fortran provides
a few functions built-in and assembly programmers had been structuring code into functions
since time immemorial. The Fortran manual even alludes to simulating functions with GOTO’s.

Frankly, not having functions is kind of an inexcusable failure in a language, except maybe for
the fact that every other aspect of Fortran was a huge improvement. The real excuse, of course,
is that the language added function support within about a year of the original release. One
could imagine they were sufficiently excited by the rest of the language that they didn’t want to
wait to implement functions before the first release.

Standard Library By most standards, 5 functions make for a poor standard library - even
SML can do better than that! To anyone who complains, Id like to point out that early Fortran
compilers ran on machines with 4K of memory. Providing users with a large body of code is
not very practical when resources are so limited (though many installations did have a few more
functions than this library suggests, such as SQRT and SIN).

Unstructured A major inconvenience in Fortran is the lack of block-structured control flow
(this one problem alone was enough to make many people want the language dead), but the fact
is this idea didn’t really catch on in other languages until the late 60’s - early 70’s, meaning that
Fortran was not too late to the party adding it in ’77.

Fixed-format Considering that everybody wrote code on punch cards back in the day, it’s
totally reasonable that Fortran used a fixed format in the 50’s. Of course what’s not reasonable
is that it maintained this format until 1990. Most programming languages could connect to the
Internet before Fortran could compile without spaces at the beginning of each line.

Types Fortran doesn’t have many types: int, float and array. Fortran was designed for ma-
chines with extremely limited resources, so this is ok. Sure, you can’t define a linked list in
Fortran ’57, but you probably couldn’t run any program that needed them in a reasonable
length of time either.

What’s more sad is the way types are notated. Distinguishing types based on the first
character a name is considered, well, unstylish today. This is actually not to far from the idea of
Hungarian notation which was popular for a while and still used in some circles today, but taken
to an illogical extreme. Fortran already has declarations for arrays - clearly there was nothing
stopping it from declaring types at the same time. This is yet another matter of “It was 1957.
You can’t expect them to think of everything”.

2 Fortran ’08

So I didn’t really have any experience with Fortran ’08 or Fortran ’57. And I couldn’t even find
a compiler for ’57. Clearly the solution was to use 08 to write a compiler for ’57. This is in
fact what I did, and you get to use that compiler when writing your homework. What follows
is the knowledge I gained from writing that compiler. Modern Fortran has become a fairly big
language by comparison, but this should give you a feel for it.

2.1 Implementation Detail

When working with gfortran, it uses file extension to decide what language version you're working
with. If you want all the nice features of modern Fortran (like free-form syntax), make your file

names end with .f08

2.2 Hello World
We start off again with a simple program:

program Hello
print *, "Hello, World!"
end program Hello

We get to see our first block statement in Fortran: the program declaration. This is in some
sense just boilerplate - pick whatever name you want for your program. I have yet to use the
name in any meaningful way.

The print statement has gotten easier to use. It doesn’t require a format string, you just
specify an output device (* means standard output) and pass it a comma-separated list of
arguments (usually but not necessarily strings). If you want to use sophisticated formatting
you use the more general write statement, which has an embedded format string in a format
analogous (not the same) to Fortran ’57:

program Hello
write (*,"(a)") "Hello, World!"
end program Hello

In a format string, “a” refers to a string, and “I” and “F” have the same meanings as they
used to. Format specifiers are comma-separated, as the inputs/outputs. This is roughly the
same syntax as ’57, but now there’s no need for a separate format statement and the resulting
code is cleaner.

If you are more observant than I am, you may have noticed that there are no functions
defined anywhere in this program, yet I said modern Fortran has functions! Essentially the
program declaration is another function declaration, especially for the main function. I can see
the appeal of not requiring a main function if you're going to write short programs where you
don’t want extra boilerplate, but in the end having extra syntax seems confusing. I like to follow
this template:

program Hello
call main
contains
subroutine main()

end subroutine main
. more functions

end program Hello

The contains keyword is straightforward: it separates the main program from the rest of
your functions. The call statement is used to call a subroutine, as you might expect. You
might not be used to the term subroutine. This is roughly another word for function, and in
the context of Fortran it means a function that doesn’t return anything (equivalent of a void

function in C). Fortran reserves the word function to mean specifically things that return stuff
(not subroutines). For fun, let’s rewrite our ’57 example in '08 (though due to the great power
of functions, we can leave out the I/O from our example)

integer function max(len, a)
integer, intent(in) :: len
integer, dimension(:), intent(in) :: a
integer :: biga = a(l)
do i=1, len

if (a(i) > biga) then

biga = a(i)

end if
end do
end function max

The syntax

integer function max(len, a)
end function max

says max takes two arguments len,a and returns an integer. Next are the type declarations
(both locals and arguments). intent(in) marks an input (so it can’t be modified), while
intent (out) marks an output argument and intent (inout) means both. Local variables don’t
have an intent. dimension(:) means the variable is an array and the length is unspecified.

Note the “implicit typing” feature still exists and can be used instead of type declarations,
though you should disable it, by putting an implicit none declaration at the start of your
program.

The syntax for do and if is mostly self-explanatory: We no longer need to specify statement
numbers since we have a structured syntax. Instead of '57’s arithmetic if, we have logical if,
which takes a boolean argument. Speaking of which, here are some new types:

e logical is the type more commonly known as boolean in most languages. It has two values
named .true. and .false. (Fortran has a trend of putting certain keywords in dots).
Logical values are introduced with the comparison operators ==, <, >, <=, >=, .ne.
(the last meaning “not equal”). There are also logical operators .and., .or., .not..

e string is not its own type, rather an array of characters. Strings are always fixed-length
(the length can be a variable, but once set, the same string is always the same length), and
any leftover space is padded with spaces. Use the built-in trim function to remove spaces,
and // as the concat operator. You can easily parse/generate string representations of
integers and floats by using the write and read statements with a string argument instead
of an I/0 device.

e Pointers are also not quite their own type. If you want a dynamically-sized array, you use
the allocatable attribute on the variable declaration. The allocate statement allocates
space for the array and deallocate frees memory.

The following example declares, allocates and frees an array.

integer :: length = 10

10

integer, dimension(:), allocatable :: my_array
allocate my_array(length)
deallocate my_array

11

