
Fortran Character String Utilities

A collection of string manipulation routines is contained in the module ‘strings’ found
in the file stringmod.f90. To obtain this module as well as some other string utilities,
go to the website http://www.gbenthien.net/strings/index.html. To use the routines in
the module ‘strings’ the user needs to add the statement

Use strings

to the top of the program. These routines were developed primarily to aid in the
reading and manipulation of input data from an ASCII text file. The routines are
described below.

1. SUBROUTINE PARSE(str, delims, args, nargs)

This routine was originally designed to separate the arguments in a command line
where the arguments are separated by certain delimiters (commas, spaces, etc.).
However, this routine can be used to separate other types of strings into their
component parts. The first input is a string str (e.g., a command line). The second
argument is a string delims containing the allowed delimiters. For example, delims
might be the string ׳, ׳ consisting of a comma and a space. The third argument is a
character array args that contains on output the substrings (arguments) separated
by the delimiters. Initial spaces in the substrings (arguments) are deleted. The final
argument is an integer nargs that gives the number of separated parts (arguments).
To treat a delimiter in str as an ordinary character precede it by a backslash (\). If a
backslash character is desired in str, precede it by another backslash (\\). In
addition, spaces that immediately precede or follow another delimiter are not
considered delimiters. Multiple spaces or tabs are considered as a single space, i.e.,
 Backslashes can be removed from an argument .׳a b׳ is treated the same as ׳a b׳
by calling the routine REMOVEBKSL, i.e.,

call removebksl(<string>)

This routine converts double backslashes (\\) to single backslashes (\).

Example: If the delimiters are a comma and a space (delims = ׳, ׳), then the
subroutine parse applied to the string ׳cmd arg1, arg\ 2, arg3׳ produces the output

args(1) = ׳cmd׳
args(2) = ׳arg1׳
args(3) = ׳arg 2׳
args(4) = ׳arg3׳
nargs = 4

2. SUBROUTINE COMPACT(str)

This routine converts multiple spaces and tabs to single spaces and deletes control
characters.

3. SUBROUTINE REMOVESP(str)

This routine removes spaces, tabs, and control characters in string str.

4. SUBROUTINE VALUE(str, number, ios)

This subroutine converts a number string to a number. The argument str is a string
representing a number. The argument number is the resulting real number or
integer (single or double precision). The argument ios is an error flag. If ios is
nonzero, then there was an error in the conversion.

5. SUBROUTINE SHIFTSTR(str, n)

This routine shifts characters in the string str by n positions (positive values denote
a right shift and negative values denote a left shift). Characters that are shifted off
the end are lost. Positions opened up by the shift are replaced by spaces.

6. SUBROUTINE INSERTSTR(str, strins, loc)

This routine inserts the string strins into the string str at position loc. Characters in
str starting at position loc are shifted right to make room for the inserted string.

7. SUBROUTINE DELSUBSTR(str, substr)

This subroutine deletes the first occurrence of substring substr from string str and
shifts characters left to fill hole.

8. SUBROUTINE DELALL(str, substr)

This routine deletes all occurrences of substring substr from string str and shifts
characters left to fill holes.

9. FUNCTION UPPERCASE(str)

This function returns a string that is like the string str with all characters that are
not between a pair of quotes ("…" or '…') converted to uppercase.

10. FUNCTION LOWERCASE(str)

This function returns a string that is like the string str with all characters that are
not between a pair of quotes ("…" or '…') converted to lowercase.

11. SUBROUTINE READLINE(nunitr, line, ios)

This routine reads a line from unit nunitr, ignoring blank lines and deleting
comments beginning with an exclamation point(!). The line is placed in the string
line. The argument ios is an error flag. If ios is not equal to zero, then there has
been an error in the read operation. A negative value for ios denotes an end of file.

12. SUBROUTINE MATCH(str, ipos, imatch)

This routine finds the delimiter in string str that matches the delimiter in position
ipos of str. The argument imatch contains the position of the matching delimiter.
Allowable delimiters are (), [], {}, <>.

13. SUBROUTINE WRITENUM(number, string, fmt)

This routine writes a number to a string. The argument number is a real number or
an integer (single or double precision). The number number is written to the
character string string with format fmt (e.g., 'e15.6' or 'i5').

14. SUBROUTINE TRIMZERO(str)

This subroutine deletes nonsignificant trailing zeroes in a number string str. A
single zero following a decimal point is allowed. For example, ′1.50000′ is
converted to ′1.5′ and ′5.′ is converted to ′5.0′.

15. SUBROUTINE WRITEQ(unit, name, value, fmt)

This routine writes a string of the form ′<name> = <value>′ to the unit unit. Here
<name> is the input string name and value is the input number value converted to a
string with the format fmt. The number value can be a real number or an integer
(single or double precision).

16. FUNCTION IS_LETTER(ch)

This function returns the logical value .true. if the input character ch is a letter
(a–z or A–Z). It returns the value .false. otherwise.

17. FUNCTION IS_DIGIT(ch)

This function returns the logical value .true. if the input character ch is a digit
(0–9). It returns the value .false. otherwise.

18. SUBROUTINE SPLIT(str, delims, before, sep)

This routine uses the first occurrence of a character from the string delims in the
string str to split the string into two parts. The portion of str before the found
delimiter is output in before; the portion of str after the found delimiter is output in
str (str is left justified). The output character sep (optional) contains the found
delimiter. To treat a delimiter in str as an ordinary character precede it by a
backslash (\). If a backslash is desired in str, precede it by another backslash (\\).
Repeated applications of SPLIT can be used to parse a string into its component
parts. Backslashes can be removed by calling the routine REMOVEBKSL, i.e.,

call removebksl(<string>)

